ICH HARMONISED GUIDELINE

GUIDELINE FOR ELEMENTAL IMPURITIES

ICH Q3D(R1) 指引之意見彙整表

段落	標題							相關建議及意見
								(請提供中英文內容)
2	Cummon of	Cadmium (Cd)						
	Summary OI			Oral	Parenteral	Inhalation		
	PDE for		PDE	ГО	1 7	2.4		
	Caumum		(µg/day)	5.0	1.7	3.4		
3-10	Introduction	Cadmium (Cd) is a transition metal whose most abundant						
		naturally-occurring isotope is non-radioactive. It is found in						
		nature in mineral forms and is obtained for commercial uses						
		principally from cadmium ore (ATSDR, 2012). Cadmium exists as						
		a salt form in the +2 oxidation state only. Some cadmium salts						
		such as cadmium chloride, cadmium sulfate and cadmium						
		nitrate are water soluble; other insoluble salts can becon						
		more soluble by interaction with acids, light or oxyger					oxygen.	
		Cadmium, cadmium oxide, cadmium salts on borosilicate carr					e carrier	
		are used as catalysts in organic synthesis. Silver cadmium alloy is						
		used in the selective hydrogenation of carbonyl compounds.						
12-15	Safety	Cadmium has shown to be genotoxic, but not mutagenic and						
	Limiting	has been acknowledged as a human carcinogen (Group 1; IARC,						
	Toxicity	2012). Cadmium and cadmium compounds cause cancer of the						
		lung. Also, positive associations have been observed between						
		exposure to cadmium and cadmium compounds and car						
		the kidr	ney and of th	ne prostate.				
16-18		A sensitive endpoint for oral exposure to cadmium and						
		cadmiu	m salts is re	nal toxicity (Buchet et al.	1990). Skele		

		renal effects are observed at similar exposure levels and are a	
		sensitive marker of cadmium exposure (ATSDR, 2012).	
19-26		Evidence from numerous epidemiologic studies assessing	
		inhalation exposures to cadmium via both occupational and	
		environmental routes has demonstrated an increased risk of	
		developing cancer (primarily lung) that correlates with	
		inhalation exposure to cadmium (IARC, 2012; NTP, 1995). ATSDR	
		(2012) concluded that lung carcinogenesis due to occupational	
		exposure was not unequivocal. Cadmium was clearly positive	
		for lung tumours in rats; non-significant, non dose dependent in	
		mice; and not observed in hamsters. An inhalation unit risk	
		estimate of 0.0018/ μ g/m ³ has been derived by the US EPA	
		(1992); however, a modifying factor approach may be used for	
		non-mutagenic carcinogens. The US Department of Labor has a	
		reported a Permitted Exposure Level of 5 μ g/m ³ for cadmium	
		(Cadmium OSHA, 2004).	
27-37	PDE – Oral	A sensitive endpoint for oral exposure to cadmium and	
	Exposure	cadmium salts is renal toxicity (Buchet et al, 1990). Skeletal and	
		renal effects are observed at similar exposure levels and are a	
		sensitive marker of cadmium exposure (ATSDR, 2012). A	
		number of oral exposure studies of cadmium in rats and mice	
		showed no evidence of carcinogenicity. Therefore, the renal	
		toxicity endpoint was used to establish the oral PDE for	
		cadmium, following the recommendations of ATSDR, an MRL of	
		0.1 μ g/kg for chronic exposure is used to set the oral PDE. This	
		is consistent with the WHO drinking water limit of 0.003	
		mg/L/day (WHO, 2011).	

		PDE = 0.1 μg/kg/d x 50 kg = 5.0 μg/day	
		No modifying factors were applied because they are	
		incorporated into the derivation of the MRL.	
38-55	PDE –	A 12-week study in rats given daily subcutaneous injections of	
	Parenteral	0.6 mg/kg Cd, 5 days per week showed renal damage at week 7	
	Exposure	and later (Prozialeck et al, 2009). A single dose level was used in	
		this study. The LOAEL of this study is 0.6 mg/kg based on	
		decreased body weight, increased urine volume and urinary	
		biomarkers seen at this dose level. This study was used to set	
		the parenteral PDE. In a separate single dose study where rats	
		were administered 0, 1, 2, 4, 8, 16 or 32 μ mol/kg cadmium	
		chloride by the subcutaneous route, sarcomas were noted at	
		the injection site at the two highest doses at the end of the 72	
		week observation period (Waalkes et al, 1999). It is uncertain	
		whether the granulomas at the sites of injection over time trap	
		an unspecified amount of the administered cadmium dose at	
		the injection site. This phenomenon may decrease the actual	
		parenteral cadmium dose, compared with the calculated	
		parenteral cadmium dose. Taking into account the modifying	
		factors (F1-F5 as discussed in Appendix 1), and correcting for	
		continuous dosing from 5 days to 7 days per week (factor of	
		5/7), the parenteral PDE is calculated as:	
		PDE = 0.6 mg/kg x 5/7 x 50 kg / 5 x 10 x 5 x 5 x 10 = 1.7 μg/day	
		A factor of 5 was chosen for F4 because cadmium is	
		carcinogenic by the inhalation route and granulomas were	
		observed by the subcutaneous route. These findings are of	

		uncertain relevance. A factor of 10 was chosen for F5 because a	
		LOAEL was used to set the PDE.	
56-73	PDE –	The United States Department of Labor Occupational Safety and	
	Inhalation	Health Administration has developed a Permitted Exposure	
	Exposure	Level of 5 μ g/m3 for cadmium. Taking into account the	
		modifying factors (F1-F5 as discussed in Appendix 1), the	
		inhalation PDE is calculated as:	
		For continuous dosing =	
		$\frac{5 \mu\text{g/m}^3 x 8 \text{hr/d} x 5 \text{d/wk}}{1.19 \mu\text{g/m}^3} = 0.00119 \mu\text{g/L}$	
		24 hr/d x 7 d/wk 1000 L/m3	
		Daily dose =	
		<u>0.00119 μg/L x 28800 L</u> = 0.685 μg/kg	
		50 kg	
		PDE = $0.685 \ \mu\text{g/kg} \times 50 \ \text{kg} / 1 \times 10 \times 1 \times 1 \times 1 = 3.43 \ \mu\text{g/day}$	
	A modifying factor for F4 of 1 was chosen based on the		
	potential for toxicity to be mitigated by the possible species		
		specificity of tumorigenesis, uncertain human occupational	
		tumorigenesis, ambient exposure levels not expected to be a	
		health hazard, and workplace exposure levels expected to be	
		safe. A larger factor F4 was not considered necessary as the PDE	
		is based on a PEL.	